Regulation of CD8 expression in mast cells by exogenous or endogenous nitric oxide.
نویسندگان
چکیده
We recently reported a novel CD8 molecule on rat alveolar macrophages and peritoneal mast cells (PMC). However, little is known about the regulation of CD8 expression and function on these cells. We investigated the regulation of CD8 expression on PMC by NO, because NO can regulate inflammatory responses and also because anti-CD8 Ab stimulates inducible NO synthase and NO production by PMC and alveolar macrophages. Ligation of CD8alpha on PMC with Ab (OX8) induced CD8alpha mRNA expression after 3-6 h, and flow cytometry demonstrated that OX8 treatment increased CD8alpha protein expression compared with PMC treated with isotype control IgG1. To test whether NO mediates the up-regulation of CD8alpha, we used the NO donor S-nitrosoglutathione (500 microM) and NO synthase inhibitors (N(G)-monomethyl-L-arginine and N(G)-nitro-L-arginine methyl ester; 100 microM). S-nitrosoglutathione up-regulated both mRNA and protein expression of CD8alpha in PMC compared with that in sham-treated cells, while NO synthase inhibitors down-regulated OX8 Ab-induced CD8alpha expression. To investigate how NO regulates CD8 expression on PMC, we examined the cGMP-dependent pathway using 8-bromo-cGMP (2 mM) and the guanylate cyclase inhibitor, 1H-oxadiazoloquinoxalin-1-one (20 microM). 8-Bromo-cGMP up-regulated CD8 expression, whereas 1H-oxadiazoloquinoxalin-1-one down-regulated its expression. Thus, ligation of CD8 up-regulates CD8 expression on PMC, a response mediated at least in part by NO through a cGMP-dependent pathway. The significance of this up-regulation of CD8alpha on mast cells (MC) is unclear, but since ligation of CD8 on MC with OX8 Ab can alter gene expression and mediator secretion, up-regulation of CD8 may enhance the MC response to natural ligation of this novel form of CD8.
منابع مشابه
Nephrotoxicity of Isosorbide Dinitrate and Cholestasis in Rat: The Possible Role of Nitric Oxide
Background: Nitric oxide (NO), a major chemical form of endothelium-derived relaxing factor and an important regulator of vascular tone, is released by endothelial cells. The role of NO is not restricted to the vascular system, and it participates in the regulation of renal hemodynamics and renal excretory function. There are increasing evidences indicating that the elevated levels of NO play a...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملNitric oxide synthase and nitric oxide production in in vivo-derived mast cells.
Nitric oxide (NO) is a potent mediator synthesized by a variety of cells involved in inflammatory reactions. We investigated the expression of NO synthase (NOS) in rat peritoneal mast cells (PMC). Small amounts of eNOS mRNA were detected basally, whereas neither mRNA for iNOS nor nNOS was detected in unstimulated PMC. Following stimulation by antigen, interferon-gamma (IFN-gamma), or anti-CD8 a...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 167 10 شماره
صفحات -
تاریخ انتشار 2001